
Collaborative Project

Rapid Explainable AI for Industrial Plants
Project Number: 32100687 Start Date of Project: 2019/09/01 Duration: 36 months

Deliverable 1.3
Requirement Catalog and Architecture of
the RAKI (Prototyp and Framework, Ver-
sion 2)

Dissemination Level Public

Due Date of Deliverable M6

Actual Submission Date M6

Work Package AP1 – Requirement Elicitation

Task AS1.4

Type document

Approval Status final

Version 2.0

Number of Pages 13

Abstract:

The information in this document reflects only the author’s views and the Federal Minister for Economic Affairs and Energy

(BMWi) is not liable for any use that may be made of the information contained therein. The information in this document is

provided "as is" without guarantee or warranty of any kind, express or implied, including but not limited to the fitness of the

information for a particular purpose. The user thereof uses the information at his/her sole risk and liability.

This project has received funding from the Federal Minister for Economic Affairs and Energy (BMWi) under grant
agreement No 32100687.



Version: 2.0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

History

Version Date Reason Revised by

2.0 28/01/2022 Revision of first draft Alexander Bigerl

1.1 28/01/2022 First draft for 2.0 Caglar Demir

1.0 13/03/2020 Revision of first draft Axel Ngonga

0.4 12/03/2020 First draft of deliverable René Speck

0.3 11/02/2020 Prioritization of features Axel Ngonga

0.2 31/12/2019 First draft of architecture Michael Röder, Alexander
Bigerl, Timofey Ermilov

0.1 01/12/2019 Initial requirements Axel Ngonga

Authors In alphabetical order.

Organization Name Contact Information

UPB Alexander Bigerl alexander.bigerl@uni-paderborn.de

UPB Axel Ngonga axel.ngonga@uni-paderborn.de

UPB Caglar Demir caglar.demir@uni-paderborn.de

UPB Diego Moussallem diego.moussallem@uni-paderborn.de

UPB Michael Röder michael.roeder@uni-paderborn.de

ULEI René Speck speck@informatik.uni-leipzig.de

ULEI Timofey Ermilov ermilov@informatik.uni-leipzig.de

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Page 1



Version: 2.0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Contents

1 Introduction 3

2 State of the art 3

2.1 Program Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Current Implementation Flaws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.3 Natural Language Generation (NLG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3 General Requirements 5

4 Architecture Requirements 5

4.1 Input and Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

4.2 Deployment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4.3 Manager Node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4.4 Storage Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4.5 Configuration Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4.6 Result Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4.7 Oracle Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4.8 Worker Nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4.9 User Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4.10 Logging and Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

5 Framework Key Performance Indicators 11

5.1 Verbalization KPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

5.1.1 Automatic metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

References 13

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Page 2



Version: 2.0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 Introduction

This deliverable presents considerations pertaining to the architecture of the machine learning (ML)
platform for scalable machine learning on structured data to be developed within the RAKI project.
The platform is designed to be generic, ergo, to accommodate ML algorithms on knowledge graphs for
both regression and classification . Moreover, it is designed to be compatible with other ML platforms.
Hence, it reuses standards (e.g., SPARQL, RDF, OWL) as much as possible. The platform is also
designed to scale. Hence, a packaging concept and a distribution concept are part of the specification,
even if the project does not plan for them to be be part of the final version of the prototype.

2 State of the art

An extensive state of the art research reveals that the current de-facto standard for Inductive Logic
Programming (ILP) on RDF knowledge graphs have similar data flows. We hence carried out an
extensive analysis of the performance of a representative framework, DL-Learner, w.r.t. runtime,
memory usage. We chose this framework as it currently achieves the best performance on standard
ILP benchmarks.

2.1 Program Flow

CLI / REST / etc 
runner

Algorithm class

Get knowledge source, 
learning problem, learning 

algorithm and reasoner from 
config

Determine start 
node

Find expansion 
candidates

If solution not 
found

Run refinement 
operator on new 

nodes

Output solution

If solution 
found

Figure 1: Overview of a typical program flow in the DL-Learner

As shown in Figure 1, the main entrypoint for the framework is the Command-Line Interface (CLI)
class. This class takes on the role of reading the configuration file and preparing the specified knowledge
source, learning algorithm, learning problem and optionally reasoner classes. The CLI runner relies
on abstract classes for knowledge source, learning problem, learning algorithm and reasoner classes to
enable extensibility. Once all the instances of these classes are constructed, the CLI passes the learning

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Page 3



Version: 2.0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

problem and knowledge source to the learning algorithm instance and calls the ‘.start()‘ method.
Alternatively, if the execution is requested to be done with cross-validation, the CLI runner might
instantiate a special cross-validation class that runs in a similar fashion to the default execution but
adds cross-validation results to the output of the ML algorithm. All the further work is executed in
the learning algorithm instance. All execution is done synchronously in one thread. All data is stored
in-memory in a sequence of abstracted classes. The storage itself relies either on the OWLApi or Jena
packages for internal data representation.

2.2 Current Implementation Flaws

• A synchronous execution of tasks can lead to a severe under-use of the CPU. Preliminary exper-
iments suggest that the CPU utilization can drop to under 10% even on small datasets. Java is
especially problematic as roughly 90% of CPU use can be due to the garbage collector. A clear
solution is to ensure that tasks can be parallelized or vectorized.

• Storing all the data (knowledge source, results of refinement operator, results for cross validation,
etc.) like in many of the current frameworks can lead to a very large memory signature and is
not practical for very large datasets unless an adequate and compressed storage solution is used.
Here, remote storage and a better in-memory storage must be explored. Preliminary works
based on an OWL to SPARQL bridge can be found in [3].

2.3 Natural Language Generation (NLG)

NLG is the process of automatically generating coherent Natural Language (NL) text from non-
linguistic data [11]. Recently, the field has seen an increased interest in the development of NLG
systems focusing on verbalizing resources from Semantic Web (SW) data [5]. The SW aims to make
information available on the Web easier to process for machines and easier to understand for humans.
However, the languages underlying this vision, i.e., Resource Description Framework (RDF), SPARQL
Protocol and RDF Query Language (SPARQL) and Web Ontology Language (OWL), are rather diffi-
cult to understand for non-expert users. For example, while the meaning of the OWL class expression
Class: Professor SubClassOf: worksAt SOME University is obvious to every SW expert, this
expression (“Every professor works at a university”) is rather difficult to fathom for lay persons.

Despite the plethora of recent works written on handling RDF data, only a few have exploited the
generation of NL from OWL and SPARQL. For instance, [1] generates sentences in English and Greek
from OWL ontologies. Also, SPARQL2NL [7] uses rules to verbalize atomic constructs and combine
their verbalization into sentences.

With this aim, we developed an open-source holistic NLG framework for the SW, named LD2NL,
which facilitates the verbalization of the three key languages of the SW, i.e., RDF, OWL, and SPARQL
into NL. Our framework is based on a bottom-up paradigm for verbalizing SW data. Additionally,
LD2NL builds upon SPARQL2NL as it is open-source and the paradigm it follows can be reused and
ported to RDF and OWL. Thus, LD2NL is capable of generating either a single sentence or a summary
of a given resource, rule, or query. LD2NL generates texts which can be easily understood by humans
and is now considered the state-of-the-art approach to verbalize SW languages.1

1https://github.com/AKSW/LD2NL

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Page 4

https://github.com/AKSW/LD2NL


Version: 2.0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3 General Requirements

The general requirements for this architecture are as follows:

1. Feasibility: The framework was to be designed so as to be implementable within the numbers of
person years foreseen in the project. Consequently, local tests and evaluation were to be preferred
over large-scale tests and deployments. Correctness is to be preferred over scalability. Still the
framework is to designed so as to be easily ported to large-scale infrastructures.

2. Releases: The framework should follow the open-source principles and provide a first stable
release with at least one fully implemented ML algorithm before M21. Other releases are to
follow the project schedule.

3. Deployment: The framework should be easily deployable locally. Hence, an adequate packaging
is necessary. Docker is to be preferred.

4. Scalability: The framework should be designed with very large datasets in mind (i.e., 1B+
triples). Hence, ports to large-scale infrastructures must be possible.

5. Language support: The framework must allow the extension towards supporting all possible
description logics and ILP algorithms. Hence, the algorithm interfaces must be as generic as
possible.

6. Oracles (optional): A valuable feature would be to allow for third-party asynchronous oracles
(e.g. user that gives feedback on results).

7. Multi-user (optional): A valuable feature would be to allow for multi-tenancy and parallel
ML jobs execution.

4 Architecture Requirements

Figure 2: Overview of RAKI

The three required main components of the architecture are:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Page 5



Version: 2.0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1. Inductive Logic Programming Component: The component defines the concept learning
problem by using a knowledge representation formalism, refinement operator, and a quality
metric. Initially, we choose the attributive language with complement ALC as a knowledge
representation formalism. The input of the ILP component comprise a set of positive (and
potentially negative) examples and a reference to a potentially remote knowledge graph including
a corresponding ontology and a knowledge representation formalism. Initially, we choose the
attributive language with complement ALC as a default. After receiving the input, the ILP
component constructs the quasi ordered search space consisting of ALC concepts. The ILP
component assigns a score to each ALC concept that is defined by a quality metric. The quality
of a concept can be determined via Accuracy, Precision, Recall and F1-score. The ILP component
hence constructs an environment for the Reinforcement Learning Component that traverses such
environment by deciding which concept to be expanded via the refinement operator.

2. Reinforcement Learning Component: The RL component works in tandem with the ILP
algorithm and serves to address the myopia of existing implementations. the RL component
provides trainable and pre-trained RL approaches. More specifically, a RL approach can be
trained at will on the given dataset. In critical cases (e.g., high variance in the Q function), it
can request supplementary data to augment the training data available. Moreover, a pre-trained
RL approach can be directly applied on the given dataset without retraining. The given dataset
consists of a set of examples and background knowledge provided in the ILP component.

3. Verbalization Component: Critical decisions detected by the ML components will be verbal-
ized and handed out to domain experts. Those experts support the Machine Learning component
by providing supplementary data, answering questions pertaining to learned models and hence
supporting the automatic decision making in critical states of the machine learning process.

The final architecture for such a framework can be based on a manager-workers pattern: a manager
node with a group of worker nodes to run in parallel (Figure 3).

4.1 Input and Output

Figure 4 shows the input and output of the different components and their connection to each other
in more detail.

1. Reinforcement Learning: to learn a Q-function approximator, SAMUEL will expect the A-
Box and the T-Box of the data to learn upon. Practically, this means:

(a) A reference to the ontology of the data (i.e., the T-Box), e.g., as an OWL file,
(b) A reference to an object that can be queried via SPARQL or
(c) A reference to a retrieval function able to return all instances of a concept in the language
L.

The module will return a model in the form of a Q-function approximator, which can be used by
the ILP module described in the following.

2. Inductive Logic Programming: This module will learn by using a RL model to estimate the
quality of refinements. Hence, it will need

(a) A reference to an OWL file describing the ontology of the data (T-Box),
(b) A reference to an object that can be queried via SPARQL or

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Page 6



Version: 2.0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 3: High-level architecture

Positive examples
Negative examples
List<RDF Resource>

Ontology
<OWL>

Knowledge
graph

<RDF>

Inductive
logical
programming

Reinforcement
learning

Model
(.ser)

Hypotheses and
scores
Map<OWL,Double>

Verbalization

Actor

Domain 
Dictionary

Legacy data
(DB, text, etc.)

Figure 4: Overview of IO behavior of the main components of the RAKI platform

(c) A reference to a retrieval function able to return all instances of a concept in the language
ALC

(d) Positive examples and optionally

(e) Negative examples as well as

(f) A reference to a Q-function estimator, i.e., to a trained RL model.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Page 7



Version: 2.0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The module will return a set of concepts mapped to scores. Note that the module is to be built so
as to support receiving an existing refinement tree as input and building thereupon. Therewith,
the computation can be stopped if critical decisions are to be made.

3. Verbalization: This module verbalizes the set of concepts, along with their scores, produced by
the ILP module in a given language L. Hence, the required input to generate the verbalizations
will be

(a) A reference to a domain dictionary
(b) A reference to a knowledge graph which can be queried for labels using a standard language,

e.g., SPARQL
(c) A reference to a concept summarization algorithm for the language L, which can take a

concept in L and return a shorter concept which minimize the classification error.

The module returns two types of outputs, (1) an automatic generated explanation pertaining to
the decisions and actions taken by each of the previous modules and (2) an automatic generated
question along with possible answers in a multiple-choice format to the domain expert for a
human-in-the-loop scenario. Additionally, a sanity-check option will be provided, where the
domain expert can register a non-sensical question-answer construct.

4.2 Deployment

For the deployment of the platform, the following requirements have been determined.

1. Platform components should be built into packaged images, e.g., Docker.

2. The platform should be deployable locally, e.g., with docker-compose.

3. The platform should allow a to be used for production-ready deployment on server clusters or in
a cloud, e.g., by using Kubernetes2 with Helm3.

4.3 Manager Node

Manager node is responsible for:

1. Providing REST API to the interfaces

2. Managing configurations provided by users

3. Controlling the execution flow of the configurations

(a) Splitting work across workers
(b) Interrupting work to ask Oracle for feedback when applicable

4. Managing result sets

Manager node should be able to handle requests in async manner to allow parallel execution.The
algorithms should be built so as to support an a-posteriori deployment at large scale.

2https://kubernetes.io/
3https://helm.sh/

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Page 8

https://helm.sh/


Version: 2.0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4.4 Storage Solution

Given the size of the data, in-memory solutions might not be the most viable approach in our frame-
work.The retrieval functions used by the algorithms must hence also support remote data sources. A
family of retrieval functions must hence provide SPARQL read-only access for workers and manager.
The SPARQL store itself can be either a local or a remote storage. Possible choices for an alpha version
include Virtuoso, BlazeGraph and especially Tentris based on the benchmarking results presented in
Figure 5.

●

●

●

●

●
0

2500

5000

7500

16 1 32 8 4

A
vg

 Q
pS

SWDF

●

●
●

● ●0

5000

10000

16 1 32 8 4
Number of Clients

DBpedia

●

●
●

●

●0

1000

2000

3000

4000

16 1 32 8 4

WatDiv

triplestore ●Blazegraph Fuseki GraphDB Tentris Virtuoso

Figure 5: Comparison of storage solutions against FEASIBLE benchmarks. The performance is mea-
sured in queries per second (QpS, higher values are better).

4.5 Configuration Storage

If required, configurations could be stored either as linked data or as key-value pairs. The configuration
should be provided as a file (RDF file, JSON file, YAML file, or similar) or as a database endpoint
(SPARQL triple store, JSON document store, key-value store, or similar). This storage would have to
provide read-write access to the manager node. The configuration could include:

1. Configuration name

2. Knowledge data (SPARQL endpoint, retrieval function)

3. Positive examples (a link to a file)

4. Negative examples (a link to a file)

5. Output (a link to a file)

6. Algorithm specification

(a) Algorithm name
(b) Parameters
(c) Algorithm version
(d) Oracle (if needed / present)
(e) Execution status

The manager node may update the configuration status to reflect execution states.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Page 9



Version: 2.0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4.6 Result Storage

Results are tied to a configuration ID. The results may be stored in a file or a separate database.
Depending on the result properties, a serialization as text, table, RDF, JSON, YAML or similar file
formats may be chosen. For some outputs, a combination of different files may be required. A separate
database (triple store, relational database, document store, depending on the datatype) may also be
used as result storage. Therefore, the manager node is granted read-write access. For local deployments
the same database as for configuration can be utilized.

4.7 Oracle Workflow

The suggested workflow for including an oracle implementation looks like follows:

1. Intermediate results of the job are stored in the result storage.

2. The configuration of the job is updated by setting its status to “needs feedback”.

3. The platform asks the user for feedback. If the user is connected to the user interface, the user
can be asked directly. If the user is not available, the manager node should send a message, e.g.,
via mail, to inform the user that his job needs feedback.

This workflow can be adapted for programmatic oracles by connecting the oracle to the platform using

1. A persistent connection (e.g. via websockets) or

2. using webhooks.

4.8 Worker Nodes

The worker nodes carry the main work load and at least one worker has to be available for the system
to work. They receive directions from the manager and have read-only access to the knowledge base
(Section 4.4). The workers should be stateless to allow for horizontal scaling. To this end, the directions
should either include the user configuration along with work instructions or the workers need a read-
only access to the configuration store. The results are reported back to the manager node. Based on
the received results, the manager decides how to proceed further on.

Workers should be resilient to algorithm errors. If a task fails, the worker should gracefully handle
the exception and notify the manager that the task has failed. The manager can react and either
re-schedule the task or abort the complete job by forwarding the error to the user.

4.9 User Interfaces

User interfaces are used to (1) create a new job with a configuration and (2) provide feedback to
algorithms as an oracle (if supported).

Possible solutions for user interfaces are

1. Web UI (based on a REST API),

2. Command-Line Interface (CLI),

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Page 10



Version: 2.0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3. REST API or

4. programmable API.

4.10 Logging and Monitoring

Thee Monitoring should notify users when one of the components of the platform has an irrecoverable
failure. In addition, it should display the overall platform status in the UI. To achieve this, existing
logging systems, e.g., Grafana4 or ELK5, and established monitoring solutions, e.g., Prometheus6 or
cAdvisor7, should be used.

5 Framework Key Performance Indicators

The following KPIs will be used for our experiments:

Precision, Recall, Accuracy and F1-Score We apply Precision P = TP
TP+FP , Recall R = TP

TP+FN ,
Accuracy A = TP+TN

TP+FP+FN+TN and F1-Score F1 = 2 · P ·R
P+R . TP, FP, FN, and TN are determined

as defined in the DL-learner framework [4].

Runtime The runtime of algorithms or queries is a central metric for evaluating the performance of
a system. It measures the time that passes between starting and finishing a task.

Queries per Seconds (QpS) is a metric that measures at what speed a system can answer queries
that are sent to it. Typically, average QpS are measured in a stresstest scenario where a mix of
queries is sent for a certain period of time.

Query Mixes per Hour (QMpH) is a metric that measures for a fixed query mix how often a
system can answer all those queries within one hour. Compared to QpS, a single long-running
query has a stronger influence on the QMpH value.

5.1 Verbalization KPI

An evaluation of a given Natural Language Generation (NLG) system may be carried out either
automatically or manually. Generally, the NLG community has opted to use automatic metrics to
decrease human efforts and time. A common process of automatic evaluation is composed of (1) the
source data (input), in our case Class Expressions, (2) generated text (output produced by an NLG
system, which is also called a hypothesis), and (3) the reference text of the source data, commonly
named as human reference. The human reference is compared automatically against the generated
text using a given evaluation metric.

There are plenty of automatic evaluation metrics that are used in the Machine Translation and
Natural Language Generation tasks. However, we plan to use in RAKI the most effective metrics
according to previous NLG work, which enables a fair scientific comparison between the quality of
different NLG systems.

4https://grafana.com/
5https://www.elastic.co/what-is/elk-stack
6https://prometheus.io/
7https://github.com/google/cadvisor

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Page 11

https://grafana.com/
https://www.elastic.co/what-is/elk-stack
https://prometheus.io/
https://github.com/google/cadvisor


Version: 2.0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5.1.1 Automatic metrics

BLEU was created by Papineni [8] widely chosen for evaluating automatically generated text outputs
due to its low costs. BLEU uses a modified precision metric for comparing the output with the human
reference. The precision is calculated by measuring the n-gram similarity (size 1-4) at word levels.
BLEU also applies a brevity penalty by comparing the length of the output with the human reference.
Additionally, some BLEU variations have been proposed to improve its evaluation quality. The most
common variation deals with the number variability (frequency) of useless words commonly generated
by NLG systems. However, the main weakness of BLEU is its difficulty handling semantic variations
(i.e., synonyms) while performing the n-gram similarity.

METEOR was introduced by Banerjee and Lavie [2] to overcome some weaknesses of BLEU,
for example, the lack of explicit word-matching between translation and reference, the lack of recall
and the use of geometric averaging of n-grams. The goal of METEOR is to use semantic features to
improve correlation with human judgments of translation quality. To this end, METEOR considers
the synonymy overlap through a shared WordNet synset of the words.

chrF proposed by Popovic [9, 10] was initially for the use of character n-gram precision and recall
(F-score). In addition, chrF also works with word n-grams. Although n-gram is already used in well-
known and complex automatic metrics, the investigation of n-grams as an individual metric has not
been exploited before. chrF has shown a good correlation with human rankings of different automatic
outputs. chrF is simple and does not require any additional information. Additionally, chrF is language
and tokenization independent.

TER is different from the metrics mentioned above. TER measures the number of necessary edits
in an output (generated text) to match the human reference exactly. The goal of TER is to measure
how much effort is needed to fix an automated translation to make it fluent and correct[12]. The
edits consist of insertions, deletions, substitutions, and shifts of words, as well as capitalization and
punctuation. The TER score is calculated by computing the number of edits divided by the average
referenced words.

ROUGE is essentially a set of metrics for evaluating automatic summarization of texts as well as
MT and NLG[6]. It works by comparing an automatically produced summary or translation against a
set of human reference summaries. ROUGE has some variations such as ROUGE-N, ROUGE-S, and
ROUGE-L. ROUGE-N measures unigram, bigram, trigram, and higher-order n-gram overlap while
ROUGE-L takes into account the longest matching sequence of words relying on Longest Common
Subsequence (LCS). An advantage of using LCS is that it does not require consecutive matches but
in-sequence matches that reflect sentence-level word order. ROUGE-S refers to any pair of words in a
sentence considering a given order, usually called as skip-gram cooccurrence.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Page 12



Version: 2.0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

References

[1] Ion Androutsopoulos, Gerasimos Lampouras, and Dimitrios Galanis. Generating natural language
descriptions from OWL ontologies: The natural owl system. J. Artif. Int. Res., 48(1):671–715,
October 2013.

[2] Satanjeev Banerjee and Alon Lavie. Meteor: An automatic metric for mt evaluation with improved
correlation with human judgments. In Proceedings of the acl workshop on intrinsic and extrinsic
evaluation measures for machine translation and/or summarization, pages 65–72, 2005.

[3] Simon Bin, Lorenz Bühmann, Jens Lehmann, and Axel-Cyrille Ngonga Ngomo. Towards sparql-
based induction for large-scale rdf data sets. In Proceedings of the Twenty-second European Con-
ference on Artificial Intelligence, pages 1551–1552. IOS Press, 2016.

[4] Lorenz Bühmann, Jens Lehmann, and Patrick Westphal. Dl-learner—a framework for inductive
learning on the semantic web. Journal of Web Semantics, 39:15–24, 2016.

[5] Claire Gardent, Anastasia Shimorina, Shashi Narayan, and Laura Perez-Beltrachini. Creating
training corpora for nlg micro-planning. In Proceedings of ACL, 2017.

[6] Chin-Yew Lin. ROUGE: A package for automatic evaluation of summaries. In Text Summa-
rization Branches Out, pages 74–81, Barcelona, Spain, July 2004. Association for Computational
Linguistics.

[7] Axel-Cyrille Ngonga Ngomo, Lorenz Bühmann, Christina Unger, Jens Lehmann, and Daniel Ger-
ber. Sorry, i don’t speak sparql: translating sparql queries into natural language. In Proceedings
of the 22nd international conference on World Wide Web, pages 977–988. ACM, 2013.

[8] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic
evaluation of machine translation. In Proceedings of the 40th annual meeting of the Association
for Computational Linguistics, pages 311–318, 2002.

[9] Maja Popović. chrf: character n-gram f-score for automatic mt evaluation. In Proceedings of the
Tenth Workshop on Statistical Machine Translation, pages 392–395, 2015.

[10] Maja Popović. chrf deconstructed: beta parameters and n-gram weights. In Proceedings of the
First Conference on Machine Translation: Volume 2, Shared Task Papers, pages 499–504, 2016.

[11] Ehud Reiter and Robert Dale. Building natural language generation systems. Cambridge university
press, 2000.

[12] Matthew Snover, Bonnie Dorr, Richard Schwartz, Linnea Micciulla, and John Makhoul. A study
of translation edit rate with targeted human annotation. In Proceedings of association for machine
translation in the Americas, volume 200, 2006.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Page 13


	Introduction
	State of the art
	Program Flow
	Current Implementation Flaws
	Natural Language Generation (NLG)

	General Requirements
	Architecture Requirements
	Input and Output
	Deployment
	Manager Node
	Storage Solution
	Configuration Storage
	Result Storage
	Oracle Workflow
	Worker Nodes
	User Interfaces
	Logging and Monitoring

	Framework Key Performance Indicators
	Verbalization KPI
	Automatic metrics


	References

